
Group 15 ('The Pnictogens')

Bond Strength Trends

- Lone pair repulsion weakens N-N single bond.
- The optimum $p\pi$ - $p\pi$ orbital overlap is found for the N-triple bond.
- The N-triple bond strength (942 kJ/mol) is more than 50 % greater than 3 times the N-N bond strength (600 kJ/mol) → N₂ is a diatomic gas.
- The P-triple bond strength (480 kJ/mol) is about 30 % less than 3 times the P-P bond strength (630 kJ/mol) → P₄ (white phosphorous) is a single bonded tetrahedral molecule.

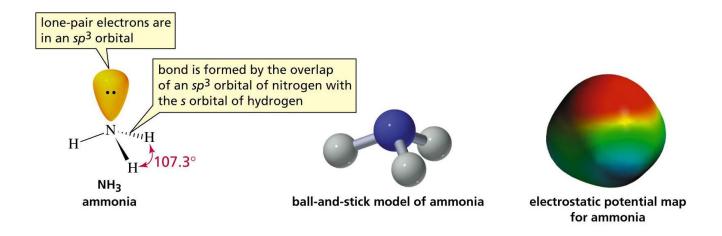
D(kJ/mol)		D(kJ/mol)		D(kJ/mol)
346	N-N	160-200	P-P	210
602	N=N	400	P=P	(330)
835	N≡N	942	P≡P	480
	346 602	346 N-N 602 N=N	346 N-N 160-200 602 N=N 400	346 N-N 160-200 P-P 602 N=N 400 P=P

Nitrogen

- Nitrogen was discovered by the Scottish physician Daniel Rutherford in 1772. He removed oxygen and carbon dioxide from air and showed that the residual gas would not support combustion or living organisms. They called it "burnt" or" dephlogisticated air," which meant air without oxygen.
- It is the fifth most abundant element in the universe and makes up about 78% of the earth's atmosphere.
- Nitrogen is obtained from liquefied air by fractional distillation.
- The largest use of nitrogen is for the production of ammonia (NH₃).
- Nitrogen gas is largely inert and is used as a protective shield. Liquid nitrogen (bp: – 196 °C) is an inexpensive cryogenic liquid used for refrigeration, preservation of biological samples and for low-temperature scientific experimentation.

Liquid nitrogen tank of the BCH

Nitrogen


Liquid Nitrogen and the spinning ping pong ball

http://www.youtube.com/watch?v=MvatmPIKOYQ

Ammonia (NH₃)

- NH₃ is a colorless gas with a strong odor.
- It is easy to liquefy (bp: 33 °C) and the liquid can be used as a solvent for many salts.
- NH₃ is well soluble in water: 772 l of NH₃ can be dissolved in 1 l of water at 15 °C.
 The resulting solutions are basic.
- The hydrogen atoms can be replaced by metals → 'amides' (e.g. NaNH₂), 'imides' (e.g. CaNH) and 'nitrides' (e.g. Mg₃N₂).

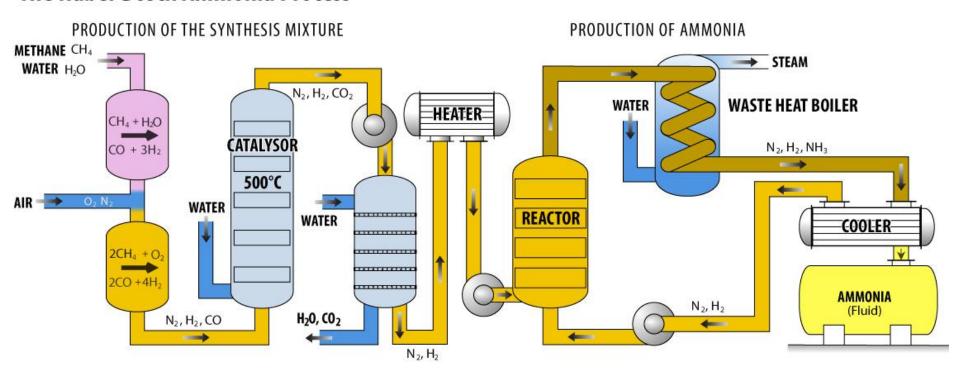
Technical Production of NH₃: The Haber-Bosch Process

 $N_2 + 3 H_2 \longrightarrow 2 NH_3 \qquad \Delta G^\circ = -7.7 \text{ kcal/mol}$

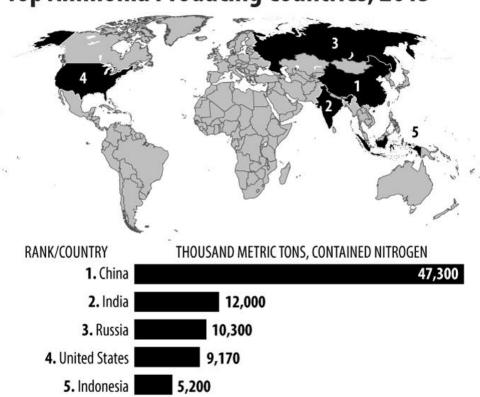
25 °C / 1 bar: 96 % NH₃

450 °C / 1 bar: 0.2 % NH₃

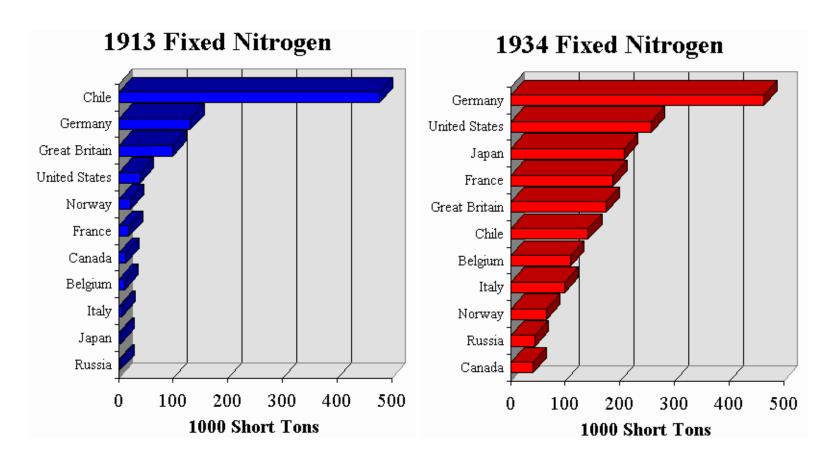
450 °C / 300 bar: 35 % NH₃



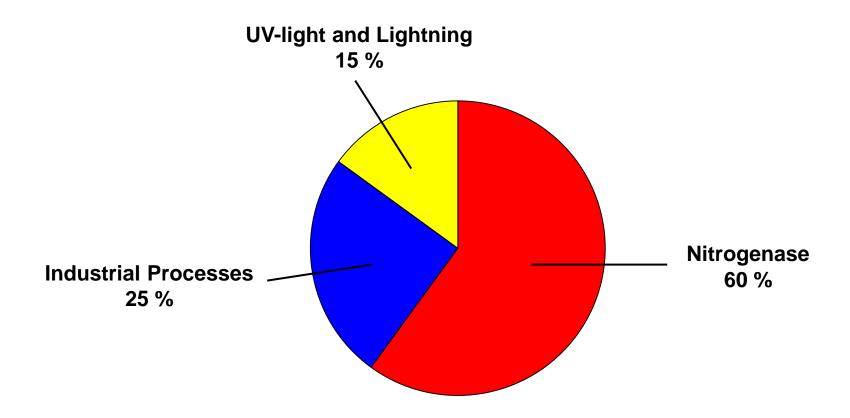
Fritz Haber Carl Bosch
Nobel Prize in 1919 Nobel Prize in 1931


Technical Production of NH₃: The Haber-Bosch Process

The Haber Bosch Ammonia Process


Technical Production of NH₃: The Haber-Bosch Process

Top Ammonia Producing Countries, 2013

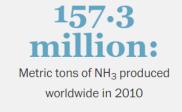


Historical Significance of the Haber-Bosch Process

Chile saltpeter (NaNO₃), accounted for more than 60% of the world's supply for most of the 19th century. Many historians and scientists think that Germany would have run out of nitrates by early 1916 if it had not been for German scientific discoveries and their industrial technology.

Nitrogen Fixation – A Comparison

Overall: approx. 280 Mt / year 80 % of the technical production goes into fertilizers



Industrial ammonia production emits more CO₂ than any other chemical-making reaction. Chemists want to change that

Scientists around the world are working to reduce how much greenhouse gas the ammoniamaking process emits

by Leigh Krietsch Boerner, special to C&EN
JUNE 15, 2019 | APPEARED IN VOLUME 97, ISSUE 24

Link to C&EN article

"CO₂ emissions from hydrogen production account for more than half of those from the entire ammonia production process."

451 million:Metric tons of CO₂ emitted by NH₃
synthesis worldwide in 2010.

"In total, from hydrocarbon feedstocks to NH₃ synthesis, every NH₃ molecule generated releases one molecule of CO₂ as a coproduct."

~1%:

Percentage of global CO₂ emissions that come from NH₃ synthesis.

Energy

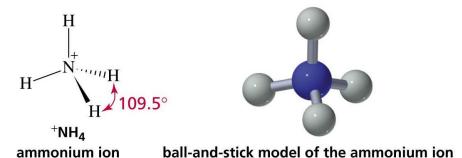
H₂ Production

NH₃ and CO₂

The Siemens green ammonia test plant uses wind power to convert hydrogen and nitrogen to ammonia.

"The small plant, set up in shipping containers, takes electricity from a wind turbine, runs it through a hydrogen electrolysis unit, and then uses the resulting hydrogen to synthesize ammonia. ... It's a small-scale, proof-of-principle system."

"Ammonia synthesis at a wind farm could help solve one of the biggest problems with renewable energy sources—they produce energy intermittently. ... Similar to gasoline, ammonia can be shipped and stored, and it is easier to deal with than gaseous hydrogen, another possible carbon-free fuel"


The Ammonium Ion (NH₄+)

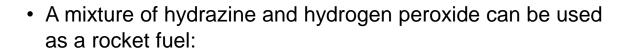
Solutions of NH₄⁺ salts are acidic:

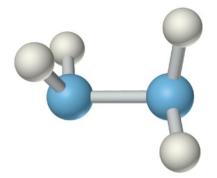
$$NH_4^+$$
 (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + NH_3 (aq) acidic solution

Salts can dissociate and evaporate on heating:


$$NH_4CI(s) \longrightarrow NH_3(g) + HCI(g)$$
'smelling salts'

The Ammonium Dichromate Volcano


Ammonium dichromate volcano


$$(NH_4)_2Cr_2O_7(s) \xrightarrow{heat} N_2(g) + Cr_2O_3(s) + 4H_2O(l)$$

Hydrazine (N₂H₄)

- Hydrazine is a colorless liquid.
- The two NH₂ groups adopt a 'gauche' conformation.
- The N-N single bond is not very strong → upon heating, hydrazine decomposes in an explosion to NH₃ and N₂ (aqueous solutions can be handled without danger).

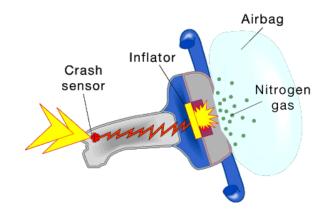
$$2 H_2O_2(I) + N_2H_4(I) \longrightarrow N_2(g) + 4 H_2O(g)$$

$$\Delta H_{rx} = -707 \text{ kJ/mol}$$

Hydrogen Azide (HN₃)

 Hydrogen azide is a poisonous, colorless liquid, which forms an acidic solution in water:

$$HN_3(I) + H_2O(I) \longrightarrow H_3O^+(aq) + N_3^-(aq)$$


 Hydrogen azide is highly explosive, producing a mixture of hydrogen and dinitrogen:

$$2 \text{ HN}_3(I) \longrightarrow \text{H}_2(g) + 3 \text{ N}_2(g)$$

• The salts are called 'azides'. They are widely used in the explosive industry (e.g. Pb(N₃)₂ as a shock-sensitive detonator).

NaN₃

- NaN₃ decomposes rapidly when heated but is stable at room temperature.
- Applying an electrical spark initiates the rapid decomposition:

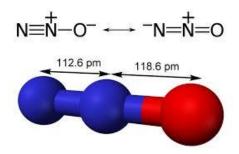
Nitrogen Halides

 NF₃ is the most stable of the nitrogen halides. It is prepared by the direct reaction of ammonia and fluorine:

$$4 \text{ NH}_3 + 3 \text{ F}_2 \longrightarrow 3 \text{ NH}_4 \text{F} + \text{NF}_3$$

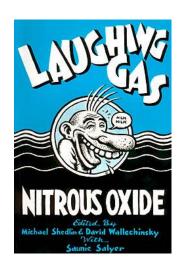
- NCI₃ and NBr₃ easily explode to give their constituent elements. Indeed, P. L. Dulong, who first prepared NCI₃ in 1811, lost an eye and three fingers while studying its chemical properties.
- Until recently NI₃ had only be prepared as the ammonia adduct 2NI₃ x NH₃. The ammonia-free NI₃ explodes at room temperature.

Nitrogen Triiodide (NI₃)



2NI₃ x NH₃ is a black powder produced when iodine crystals are added to a solution of concentrated aqueous ammonia. While the crystals of NI₃ are wet, they are stable, but when the substance dries off, the NI₃ is touch-sensitive, and decomposes explosively to produce nitrogen gas and iodine vapor.

$$2NI_3 \times NH_3 \longrightarrow 3I_2 + N_2 + 2NH_3$$


Dinitrogen Monoxide (N₂O) – 'Laughing Gas'

- N₂O is a non-toxic, odorless and tasteless gas.
- It has a linear geometry; isoelectronic to CO₂ and N₃⁻.

- When inhaled it produces insensibility to pain preceded by mild hysteria, sometimes laughter.
- N₂O can be prepared by careful thermal decomposition of ammonium nitrate:

$$NH_4NO_3 \xrightarrow{\Delta} NH_3 + HNO_3 \xrightarrow{200 \text{ °C}} N_2O + 2 H_2O$$

Dinitrogen Monoxide (N₂O)

Laughing gas party 1839

N₂O as anesthetic 1844

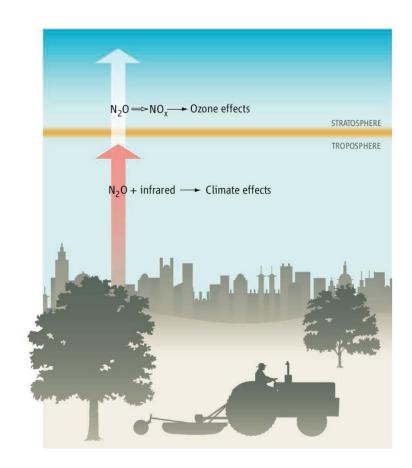
Childbirth

Whipping agent

Dinitrogen Monoxide (N₂O)

ATMOSPHERE

Nitrous Oxide: No Laughing Matter


Donald J. Wuebbles

Rising atmospheric concentrations of nitrous oxide are contributing to global warming and stratospheric ozone destruction.

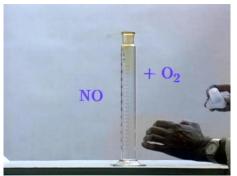
Nitrous Oxide (N_2O) : The Dominant Ozone-Depleting Substance Emitted in the 21st Century

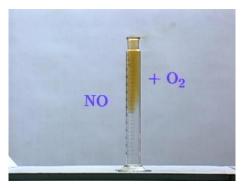
A. R. Ravishankara,* John S. Daniel, Robert W. Portmann

By comparing the ozone depletion potential—weighted anthropogenic emissions of N_2O with those of other ozone-depleting substances, we show that N_2O emission currently is the single most important ozone-depleting emission and is expected to remain the largest throughout the 21st century. N_2O is unregulated by the Montreal Protocol. Limiting future N_2O emissions would enhance the recovery of the ozone layer from its depleted state and would also reduce the anthropogenic forcing of the climate system, representing a win-win for both ozone and climate.

$$NO + O_3 \rightarrow NO_2 + O_2$$

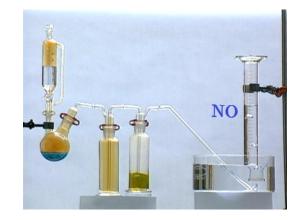
 $O + NO_2 \rightarrow NO + O_2$
 $net: O + O_3 \rightarrow 2O_2$


Nitric Oxide (NO)

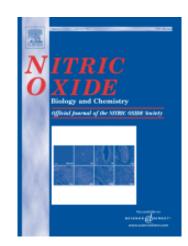

• NO has one unpaired electron (corresponds to CO plus one extra e⁻ in an antibonding orbital).

- NO has little tendency to dimerize to N₂O₂.
- Easily oxidized to NO⁺ (nitrosyl cation); NO⁺ is isoelectronic to CO and has an extensive metal chemistry.
- NO reacts rapidly with O₂:

$$2 \text{ NO (g)} + O_2 (g) \longrightarrow 2 \text{ NO}_2 (g)$$
 brown



Synthesis of NO



$$3 \text{ Cu} + 8 \text{ HNO}_3 \longrightarrow 2 \text{ NO} + 3 \text{ Cu}(\text{NO}_3)_2 + 4 \text{ H}_2\text{O}$$

Industrial production of NO is accomplished through catalytic combustion of ammonia, and in the laboratory it is produced through the reduction of nitric acid.

The Physiological Role of NO

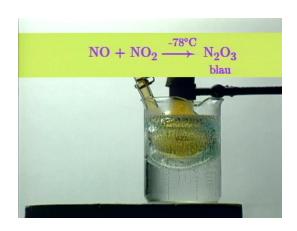
- 1979: First described as a potent relaxant of peripheral vascular smooth muscle.
- 1992: Molecule of the year of the journal *Science*.
- 1998: Nobel Prize for Medicine.
- Used by the body as a signaling molecule.
- Serves different functions depending on body system. i.e. neurotransmitter, vasodilator, bactericide.
- 'Nitro' heart drugs like nitroglycerine and amyl nitrite lower the blood pressure by increasing the NO concentration.

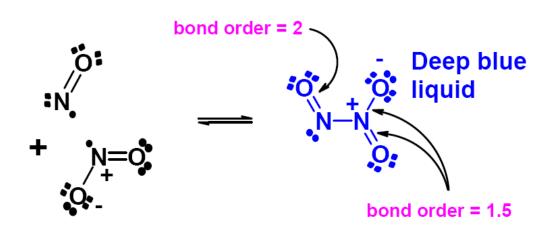
NO₂ and N₂O₄

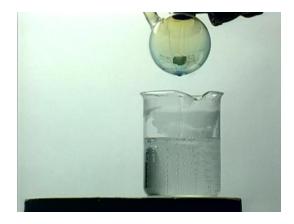
- NO₂ is a radical with a bond order of 1.5.
- NO₂ dimerizes at low temperatures but the N-N bond is weak.
- It is an important atmospheric pollutant.
- It is the oxidation product of NO.

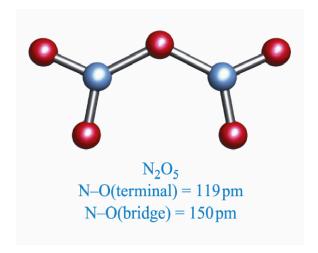
The $NO_2 - N_2O_4$ Equilibrium




$$2 \text{ NO}_2 \longrightarrow \text{N}_2\text{O}_4 \qquad \Delta H^\circ = -57.2 \text{ kJ/mol}$$


The change in color is due to the equilibrium between the brown, paramagnetic nitrogen dioxide and the colorless, diamagnetic dinitrogen tetroxide. At low temperatures, N_2O_4 predominates, with hardly any NO_2 present.


Dinitrogen Trioxide (N₂O₃)



Formed as a blue liquid upon cooling of a mixture of the radicals NO and NO₂.

Dinitrogen Pentoxide (N₂O₅)

Anhydride of nitric acid

Environmental Problems of NO_x Gases

- NO and NO₂ are collectively known as NO_x and are familiar as one of the several components of automobile exhaust that create smog. In the hot combustion chambers of a car's engine, N₂ and O₂ react together to form NO. This process is normally unfavorable, but at high temperatures in the combustion chamber the reaction proceeds rapidly.
- Once released into the atmosphere, NO reacts to form NO₂, which is familiar as the brown hazy color of smog.
- NO₂ can then be split apart by ultra-violet radiation from the sun, to produce oxygen atoms. These then react with oxygen molecules to make ozone.
- NO₂ (along with SO₂) dissolves in the water droplets of clouds to give acids (HNO₃ and HNO₂). This corrosive mixture can then fall back to Earth as 'acid rain', which can be as acidic as lemon juice (pH 2.2-2.7).

Smog in Mexico City

Nitrogen Oxides – Summary

Oxidation State	+1	+2	+3	+4	+5	1
N-Oxides	N ₂ O	NO N_2O_2	N_2O_3	NO_2 N_2O_4	N ₂ O ₅	

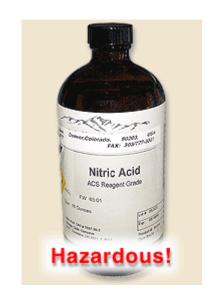
- The nitrogen oxides are with the exception of N₂O₅ metastable, endothermic compounds, which decompose upon heating to the elements.
- The oxides NO and NO₂ have an unpaired electron but are radicals which are stable at room temperature. They are in equilibrium with the diamagnetic dimers.

Nitrous Acid (HNO₂)

- Nitrous acid, HNO₂, is formed upon dissolving N₂O₃ in water or upon addition of acids to nitrite salts.
- It has not been isolated as a pure compound. At room temperature, it readily decomposes to nitric acid and NO, the latter reacting further to yield brown fumes of NO₂:

$$3 \text{ HNO}_2 \longrightarrow \text{HNO}_3 + 2 \text{ NO} + \text{H}_2\text{O}$$

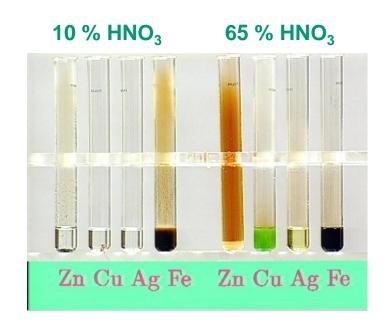
 $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$


$$\begin{array}{c} & & & \\ & &$$

Sodium Nitrite (NaNO₂)

- NaNO₂ is used as a food preservative to inhibit bacterial growth. The nitrite ions (NO₂-) in these meats inhibit the growth of a bacterium (*Clostridium botulinum*) which causes the fatal food poisoning known as *botulism*.
- It is also used because it fixes the bright red color of fresh meat, which would otherwise quickly fade to an unpalatable brown .
- But: cooking converts residual nitrite to nitrosamines known carcinogens.

Nitric Acid (HNO₃)


- HNO₃ is made on industrial scale by the Ostwald process.
- 100% pure, anhydrous nitric acid is a colorless anhydrous solid. What we call 'concentrated nitric acid' is actually a solution of 68% by weight HNO₃ in water.
- HNO₃ is strongly oxidizing.
- Aqua Regia (approx 3 vols HCl to 1 vol HNO₃) attacks even the inert metals gold and platinum.

Nitric Acid and Metals

- Zinc metal reacts with 10% HNO₃.
- 10% HNO₃ does not dissolve copper.
- Silver does not react with 10% HNO₃.
- Iron reacts violently with diluted nitric acid.

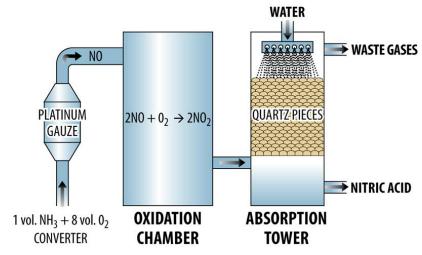
- Zinc metal reacts with 65% nitric acid extraordinary strong.
- Copper is dissolved under formation of green copper(II) nitrate.
- Silver nitrate is produced with concentrated nitric acid.
- Iron does not react with 65% HNO₃ because of passivation.

The Ostwald Process

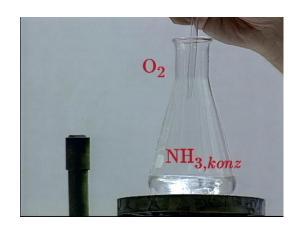
HNO₃ is made from ammonia by the *Ostwald Process* (developed in 1902 by the German chemist Wilhelm Ostwald, who got the Nobel prize in 1909). This process reacts together O₂ and NH₃ at 850°C and 5 atmospheres pressure, with the help of platinum and rhodium catalysts, to make NO. This is then oxidized to NO₂, which is then dissolved in water to make HNO₃.

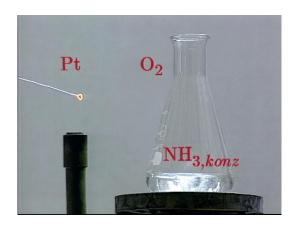
Stage 1 primary oxidation

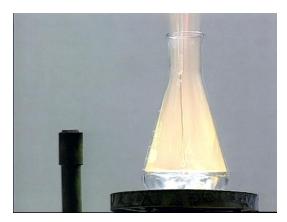
$$4 \text{ NH}_3 (g) + 5 O_2 (g) \xrightarrow{\text{Pt}} 4 \text{ NO } (g) + 6 H_2 O (g)$$


Stage 2 secondary oxidation

$$2 \text{ NO (g)} + O_2 \text{ (g)} \longrightarrow 2 \text{ NO}_2 \text{ (g)}$$


Stage 3 disproprtionation and hydration


$$3 \text{ NO}_2 (g) + \text{H}_2 O (I) \longrightarrow 2 \text{ HNO}_3 (I) + \text{NO} (g)$$
recycle


The Ostwald Process of Creating Nitric Acid

The Catalytic Oxidation of Ammonia

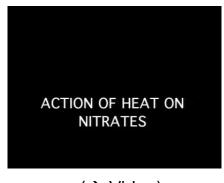
- An Erlenmeyer flask containing conc. ammonia solution is filled with oxygen. The glowing platinum loop is introduced into the NH₃ / O₂ atmosphere and a spontaneous self ignition occurs.
- Cr₂O₃ can also be used as the catalyst.

Ammonium Nitrate (NH₄NO₃)

- The biggest (80%) use of nitric acid is in making ammonium nitrate, NH₄NO₃.
- NH₄NO₃ is an ingredient in many gunpowder recipes, and is an important explosive in its own right, but is mainly used as an agricultural fertilizer.

NH₄NO₃ is one of the most commonly used fertilizers.

It works! (half ton pumpkin)


Ammonium Nitrate (NH₄NO₃)

Ammonium nitrate explosion in Beirut 2020 (218 dead, ~ 300'000 homeless)

Ammonium nitrate explosion in Oppau in 1921 (561 dead, > 7000 homeless)

(→ Video)

Hydroxylamine (NH₂OH)

- Hydroxylamine is the hydroxy derivative of ammonia. It is a colorless solid.
- It slowly decomposes at room temperature at 100 °C it explodes to give NH₃, N₂ and H₂O:

$$3 \text{ NH}_2\text{OH} \longrightarrow \text{NH}_3 + \text{N}_2 + 3 \text{ H}_2\text{O}$$

More stable is the salt [NH₃OH]Cl ('hydroxylamine hydrochloride').

Hydroxylamine was involved in recent accidents: An explosion at Concept Sciences, Pennsylvania, on February 19, 1999, which killed five people, injured at least 13, and destroyed a 45,000-ft2 structure.